skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Russell, Heather M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For each fully commutative permutation, we construct a “boolean core,” which is the maximal boolean permutation in its principal order ideal under the right weak order. We partition the set of fully commutative permutations into the recently defined crowded and uncrowded elements, distinguished by whether or not their RSK insertion tableaux satisfy a sparsity condition. We show that a fully commutative element is uncrowded exactly when it shares the RSK insertion tableau with its boolean core. We present the dynamics of the right weak order on fully commutative permutations, with particular interest in when they change from uncrowded to crowded. In particular, we use consecutive permutation patterns and descents to characterize the minimal crowded elements under the right weak order. 
    more » « less
  2. Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $$\mathfrak{sl}_k$$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $$\mathfrak{sl}_3$$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $$\mathfrak{sl}_2$$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $$\mathfrak{sl}_3$$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $$\mathfrak{sl}_3$$. 
    more » « less